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We develop the dynamics of an unstable Yang-Mills field mode previously found by us. We argue that this unstable mode 

corresponds to the transition to a state where electric vortex lines are created. 

Recently we have studied [I] (henceforth ref. [I] is referred to as I) an unstable mode which is produced when 
a charged vector field responds to an external homogeneous color magnetic field H. The motivation for our work 
was that if one starts out in the unstable perturbative “ground state”, there will probably be vacuum fluctuations 
characterized by a constant magnetic field (this is supported by simple one-loop calculations of the effective po- 
tential as a function of H [2]). Thus, even if the constant magnetic field is likely to disappear in the end, for some 
time it can influence the dynamics. 

In the present note we shall discuss the unstable mode (induced by the magnetic field) further. In I we found 
the “longitudinal” (i.e., /J, v = 0,3 and k = (0, k3 , k4) if Hpoints in the 3-direction) vacuum polarization*’ 

The contribution of the unstable mode to ll is given by (see e.g. eq. (4.3) in I) 

‘knstable 
(k2) = $ eHj da (2a - 1)2 

mode 0 k2,(1 - (u) - eH ’ 

It was noticed in I that the vacuum polarization (2) could be computed from an effective lagrangian 

(1) 

(2) 

(3) 

where a, is a (1 + 1)dimensional vector field (JJ = 3,4), 4 is a complex (1 t I)-dimensional scalar field and f,,v 
= apa, - a,a,. In eq. (3) 

The two dimensions referred to in eq. (3) are the 3 and 4 directions. 
The lagrangian (3) looks very similar to the Higgs lagrangian, and it is natural to ask if a ($14-term does not ap- 

pear in higher orders than we have included in eq. (2). This becomes more clear if one considers the (3 + l)-dimen- 
sional lagrangian (AM = AZ, lVp = (A: + iA:)/ f orms an SU(2) Yang-Mills field) 

*’ The metric used here is formally euclidean, with coordinates labelled 1, . ,4 and x4 = tie, etc. 
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p=-+(D;W;-D;W;)(D,W, -DvW,,)-D;WfD"W, -~(Q4-avA~)2 

-$(apq2 -ie(apAV - avq wEwv ++e2(wpwi- wvwJ2. (4) 

The tachyon in eq. (3) is expected to propagate in the loops, thus turning the W4 interaction into a @I4 interaction. 
Instead of eq. (3) one then obtains the following effective action for the unstable mode, 

Seff = s dx, dx4 .L?;;; eff- i 2 
-@2D - -;rf,, -+(apfzpj2 - I(ap - ie 2Dap)4i2 +eHk$i2 -xi@i4, (5) 

h = 3 2 (eH/2lr). (6) 

The unstable mode will, of course, interact with other modes, but this interaction is not considered here. The ef- 
fective action (5) is then expected to reproduce the same “longitudinal” Greens functions as one can compute 
from the “fundamental” lagrangian (4) as far as the unstable mode is concerned. Notice that there is a formal cor- 
respondence between the Feynman diagrams in (4) and (5). The difference is that (4) is (3 + 1)-dimensional and 
contains (apart from the “photon” field) charged vector fields describing all modes, whereas (5) is (1 f l)dimen- 
sional and the charged field is a scalar describing only the unstable mode. 

It is well known [3] that eq. (5) has non-trivial vortex solutions. The vortex is of an electric type (see ref. [4] 
where further references can be found), since al, only has n = 3,4 components and since a,, depends only on x3 
and x4. 

However, it is important to realize that we can choose other planes - thus, e.g. the (x2, x4) plane also contains 
vortex solutionss2. Since the vortex is electric, one would expect that it can terminate on quarks. The vortex may 
therefore be relevant for the quark confinement discussed by ‘t Hooft [4], although this is not clear in detail. 

We want to emphasize that although the external field is necessary in order to induce the vortices, the non- 
trivial topology remains when the field is switched off [l] . This phenomenon is similar to the Prasad-Sommerfield 
limit [5]. 

To give a formal proof that the 1 + l-dimensional effective lagrangian indeed is produced in the way described 
above, we observe that in order to carry out a perturbative expansion of the path integral 

Z = const .I- tul VW1 VW*1 ewGWIWIW*l) (7) 

(or the corresponding generating functional for Green’s functions), where S = JL? , and P is given by eq. (4), we first 
have to determine the propagators, which means that a representation of the integration variables must be found 
for which the part of the Lagrangian which is bilinear in the fields, is diagonal. For the charged vector field W this 
means that we have to diagonalize the differential operator 

QctV = fip,DzDf - 2ieF !JV’ 

where F,, = -Fzl = Hand all other components of F are zero, whereas: 

(8) 

Dil = (a,, a2 - ieHxll a31 a,), (9) 

i.e. it is the covariant derivative with respect to the background field, in contrast to the symbol D, occurring in 
eq. (4) which is the covariant derivative with respect to both the background field and the dynamical variable A,. 

The last term in (8) acts as a mass matrix. It has two eigenvectors with nontrivial eigenvalues. They are 

*’ Remember that we took kL = 0. Thus, in the “transverse” plane we are at large distances. 
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e+ = (1, *i, 0,0)/J? (10) 

with eigenvalues +2eH. To get a tachyonic propagator we have to use the positive eigenvalue, so the tachyonic 
mode is contained in the component of the field W along e+ . When acting here, the differential operator Cg becomes: 

QI,+ = a: ~ e2~2x: - 2ieHxIa2 t ai + ai - ai + 2eH. (11) 

Obviously, the operator is diagonal when it acts upon a function which is a plane wave in the x2, x3 and x0 vari- 

ables and a Hermite function in the x1 variable. The eigenfunctions which produce the unstable mode are: 

FL:::, k. (x) = 4m exp [-* eH(x, - k2/ef12] exp [i(k2x2 + k3x3 - koxo)] , (12) 

for which 

CD le+ F~~~~,ko (x) = (ki - kf + eH) Fchch) kz.k&)(x). (13) 

The propagator of the unstable mode is thus in the momentum-space representation: 

(ki - kt - eH - ie)-' , (14) 

which clearly corresponds to the propagation in the 3-O plane of a tachyon with mass-squared eH. 
In coordinate space the unstable mode can be described formally by a field U(x), the propagator of which ac- 

cording to (12) and (14) is given by: 

iVU(x) U* (x ‘))(O) = J 
d k, dk, dk, $;;;;,k,(x) $;,‘;;:k, (x’) 

(27Q3 ki -ki -eH-ie 

s d kg dk, exp{i[k3(x3 -xi) - k,(x, -xA)]} 

= (2792 k: -kg -eH-ie 
K(x,,x,; x;,x;), (15) 

K(xl,x2:x;‘x;)=~ exp[iieH(xl +x;)(x2 -xi)] exp{-ieH[(xl -xi,” +(x2 -x;)~]}, (16) 

while its interaction with itself and with the “photon” field A,, if only the /.I = 3,0 components of A, are present, 
according to (4) just is the interaction part of a Higgs lagrangian: 

Pint[A, U, U*] =-ieAfiU*~MU-e2A~U*U-_e2(U*U)2. (17) 

Furthermore the kernel K has properties which essentially make the dynamics of the unstable mode 1 + 1-dimen. 
sional. It firstly fulfills: 

s dx;dw~K(xl,x2;x;,x;)K(x;,x~;x;x~)=K(xl,x2;x;,x;l), (18) 

i.e. it reproduces itself if two propagators are joined by a vertex at which no transfer of transverse momentum 
takes place. Thus, a one-loop Feynman integral into which no transverse momentum flows is given by a Feynman 
integral where the propagators are free 1 + l-dimensional scalar tachyons propagators, and the interaction is de- 
scribed by eq. (5). This follows if one carries out all the integrations over the transverse coordinates, using the 
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chain rule (18). One is left with: 

s dx, dx2K(x1:x2;xl,x2) =$2~r)~6(~)(0), (19) 

where the 6 -function expresses conservation of the transverse momenta (which were all set equal to zero). The re- 
maining (x3, x0)-integrations are then just (1 + 1)dimensional. A special case of this result was found in I. 

Also, even if some transverse momentum flow through the loop, the structure of K induces a gaussian cut-off: 

so the dynamics of the unstable mode remains almost (1 + 1)dimensional. 
These arguments one can give a more precise form by going back to the path integral Z. The unstable mode is, 

according to the discussion in the preceding paragraphs, isolated in the first term on the right-hand side, when the 

field W is split into orthogonal components according to: 

W,(x) = ei f 2 4deH/n exp [-$ eH(x 1 - k2/eHIJ21 exp(ik2x2) 4kz(x3,xO) + W,(x), (21) 

where $kl(x3, x0) is the dynamical variable (the integration variable in the path integral) of the unstable mode. 
The perturbation series characterized by the propagator (1 S), and the interaction (17) is generated by taking in 

eq. (7) only the self-interaction of the variable $kz(x3, x0) as well as its interaction with the field A, (p = 3,0) in- 
to account. Eq. (7) then reduces to: 

ZCunst. mode) = $ [dA] [da] [d#*] exp{iS(unst. mode) [A, 4, @*I} , (22) 

where #nsf. mode) , apart from the restriction on A, mentioned above, emerges from S through the replacement 
of W, by the first term on the right-hand side of (21). In the new action the integrals over x1 and x2 can be car- 
ried out explicitly. The part involving only 4 and @* becomes: 

S(unst. mode) [G, G* 1 = j-2 s dx, dxo {-lafiGkz I2 + eHI@k, I21 (x3, x0> 

e2 -- 
2 J- 

dk, dk; dk; dk; k; t ki2 t k12 t kT2 - (k2 + k;)2 
_--__ 
2n 2fl 2rl 2rr 

2ns(k, t k; - k; - k;” ) &%@i exp - 
2eH 

X s dx, ho 4,(x, > x0> 4&(x3 > x0) $Jx3, x0> @,4x3 1 x0> 

while the part describing the interaction between 4, @* and A becomes: 

(23) 

‘;. scunst. mode) [A, 4, #*I = l dx, dxoJs exp{-(kf + k$/beH]Jz ‘& 2nF(k2 + ki - ki) 

X exp{ikl(k; +k;‘)DeH} I-ieAJk,, k2;x3,xO) C& gp4,;) (x3,x0) 

- e2At(kl ,k2;x39x0)((& Q) (x3,x0)). (24) 

Here the gaussian factor in the integrand obviously gives rise to a cut-off in the transverse momentum transferred 
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by the “photon”-field, in agreement with (20). Eqs. (22) and (23) correspond to a Higgs-type interaction if c#+* is 

only allowed to have a narrow distribution in k,. 
If the perturbative vacuum does not produce fluctuations corresponding to a constant magnetic field, our work 

is clearly without any interest. In view of the importance of this point we shall now indicate that there exist a 
definition of the renormalized coupling which gives vacuum fluctuations of the constant magnetic field type (pro- 
vided the number of flavors is less than or equal to 8 for color SU(3)). The effective Lagrangian Ref? as a function 
of the magnetic field H has been computed [2]. The result is 

Re &@/a(~H*) = -e*/C(t)*; t = In eH/.u2, (25) 

where e(O) = e and de/dt = P(C), $ = a/(1 + P/e). (26) 

Following the procedure of ‘t Hooft [6], we can now define the renormalized coupling K such that 

P(e) =@ +/3,e5. (27) 

With this definition it is easily seen that in general Re .C? has a minimum away from the origin [ 1,2], corresponding 

to e(t) = 00 for some finite value of t (i.e., corresponding to the Landau tachyon which, interestingly enough, dis- 
appears from the usual Green’s functions when the definition (27) is accepted, as one can see from eq. (26)). From 
I, we do not expect this to be a stable minimum, but for our purpose it is enough that this state exists for some 
time, 

The condition for the Landau tachyon to occur is that 02 < 0. For color SU(3) this implies that the number of 
flavors satisfies 

Nf< 153/19 = 8.05 (28) 

so there should be at most 8 flavors in order that the mechanism discussed above works. 
Thus, in conclusion, if Nf < 8 then no matter how short the constant field fluctuations live, they produce a 

soup of electric vortex lines (and anti-vortex lines), which in the usual way could be responsible for confinement. 
Finally we shall make some comments on the problem of Lorentz invariance. The calculations in I as well as 

our derivation of the Higgs lagrangian in the present paper are all done by means of a constant homogeneous field 
pointing in some direction. This set up of course breaks rotational invariance. On the other hand, as a function of 
trFzv the minimum arising from eq. (25) can be realized in an infinity of ways, one of which is our realization. A 
rotational invariant realization is Hab = H6’, where a is an isospin index, and b is a spatial index. It is plausible 
that no matter how one realizes the minimum in ReC in eq. (25), all physical results should be the same, includ- 
ing the effective Higgs lagrangian describing the dynamics of the unstable mode*3. 

We thank A. D’Adda, P. Di Vecchia, M. Luscher and H.B. Nielsen for useful discussions. 

*3 If the rotational invariant realization is chosen, it is to be expected that the (x4, x3)-plane is replaced by the (x4, r)-plane, 

where r = (XT + xg + .x:)~‘~. The vortices then form an electric bag. 
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